COMPACT COMPOSITION OPERATORS ON THE BLOCH SPACE

KEVIN MADIGAN AND ALEC MATHESON

ABSTRACT. Necessary and sufficient conditions are given for a composition operator $C_{\phi}f=f\circ\phi$ to be compact on the Bloch space \mathscr{B} and on the little Bloch space \mathscr{B}_0 . Weakly compact composition operators on \mathscr{B}_0 are shown to be compact. If $\phi\in\mathscr{B}_0$ is a conformal mapping of the unit disk $\mathbb D$ into itself whose image $\phi(\mathbb D)$ approaches the unit circle $\mathbb T$ only in a finite number of nontangential cusps, then C_{ϕ} is compact on \mathscr{B}_0 . On the other hand if there is a point of $\mathbb T\cap\overline{\phi(\mathbb D)}$ at which $\phi(\mathbb D)$ does not have a cusp, then C_{ϕ} is not compact.

1. Introduction

Let $\mathbb D$ denote the unit disk in the complex plane. A function f holomorphic in $\mathbb D$ is said to belong to the Bloch space $\mathscr B$ if

$$\sup_{z\in\mathbb{D}}(1-|z|^2)|f'(z)|<\infty$$

and to the little Bloch space \mathcal{B}_0 if

$$\lim_{|z| \to 1} (1 - |z|^2)|f'(z)| = 0.$$

It is well known that \mathcal{B} is a Banach space under the norm

$$||f||_{\mathscr{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)|f'(z)|$$

and that \mathscr{B}_0 is a closed subspace of \mathscr{B} . Furthermore, \mathscr{B} is isometrically isomorphic to the second dual of \mathscr{B}_0 and the inclusion $\mathscr{B}_0 \subset \mathscr{B}$ corresponds to the canonical imbedding of \mathscr{B}_0 into \mathscr{B}_0^{**} [ACP]. It is a simple consequence of the Schwarz-Pick lemma [A] that a holomorphic mapping ϕ of the unit disk into itself induces a bounded composition operator $C_\phi f = f \circ \phi$ on \mathscr{B} . Indeed, if $f \in \mathscr{B}$, then

(1)
$$(1-|z|^2)|(f\circ\phi)'(z)| = (1-|z|^2)|f'(\phi(z))||\phi'(z)|$$

$$= \frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)|(1-|\phi(z)|^2)|f'(\phi(z))|$$

Received by the editors November 23, 1993 and, in revised form, April 27, 1994; originally communicated to the *Proceedings of the AMS* by Theodore Gamelin.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47B38, 47B07; Secondary 30D55.

Key words and phrases. Composition operator, compact operator, Bloch space, cusp.

The authors would like to thank Dan Luecking for bringing Proposition 1 to their attention and David Stegenga for discussions about cusps.

and the Schwarz-Pick lemma guarantees that

(2)
$$\frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)| \le 1.$$

Since the identity function f(z)=z belongs to \mathscr{B}_0 , it is clear that $\phi\in\mathscr{B}_0$ if C_ϕ maps \mathscr{B}_0 into itself. Conversely, if $\phi\in\mathscr{B}_0$ and $f\in\mathscr{B}_0$, it follows from (1) and (2) that $f\circ\phi\in\mathscr{B}_0$. Indeed, if $\epsilon>0$, there exists $\delta>0$ such that $(1-|z|^2)|f'(z)|<\epsilon$ whenever $|z|^2>1-\delta$. In particular, $(1-|z|^2)|(f\circ\phi)'(z)|<\epsilon$ whenever $|\phi(z)|^2>1-\delta$. On the other hand, if $|\phi(z)|^2\leq 1-\delta$,

$$(1-|z|^2)|(f\circ\phi)'(z)|\leq \frac{||f||_{\mathscr{B}}}{\delta}(1-|z|^2)|\phi'(z)|,$$

and the right-hand side tends to 0 as $|z| \rightarrow 1$.

In Section 2 the compact composition operators on \mathscr{B}_0 and on \mathscr{B} will be characterized in terms of the quotient $\frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)|$. A bounded linear operator $T:X\to Y$ from the Banach space X to the Banach space Y is weakly compact if T takes bounded sets in X into relatively weakly compact sets in Y. Gantmacher's theorem [D, p. 21] asserts that T is weakly compact if and only if $T^{**}(X^{**})\subset Y$ where T^{**} denotes the second adjoint of T. This theorem and the characterization of compact operators on \mathscr{B}_0 will be used to show that every weakly compact composition operator on \mathscr{B}_0 is compact.

In Section 3 the results of Section 2 will be applied to certain univalent functions ϕ which map $\mathbb D$ into itself. It is known that such functions belong to \mathscr{B}_0 [P, p. 12]; and it will be clear from Section 2 that if $\|\phi\|_{\infty} < 1$, then C_{ϕ} is compact on \mathscr{B}_0 . On the other hand if $\|\phi\|_{\infty} = 1$ and there is a point of $\mathbb{T} \cap \overline{\phi(\mathbb{D})}$ at which $\phi(\mathbb{D})$ does not have a cusp, then C_{ϕ} is not compact. However if $\mathbb{T} \cap \overline{\phi(\mathbb{D})}$ consists of only one point at which $\phi(\mathbb{D})$ has a nontangential cusp, then C_{ϕ} is compact on \mathscr{B}_0 .

2. Compactness

Theorem 1 gives a precise description of those ϕ which induce compact composition operators on \mathcal{B}_0 . It will be useful first to give a criterion for compactness in \mathcal{B}_0 .

Lemma 1. A closed set K in \mathcal{B}_0 is compact if and only if it is bounded and satisfies

(3)
$$\lim_{|z| \to 1} \sup_{f \in K} (1 - |z|^2) |f'(z)| = 0.$$

Proof. First suppose that K is compact and let $\epsilon > 0$. Choose an $\epsilon/2$ -net f_1 , f_2 , ..., f_n in K. There is an r, 0 < r < 1, such that $(1 - |z|^2)|f_i'(z)| < \epsilon/2$ if |z| > r, $1 \le i \le n$. If $f \in K$, $||f - f_i||_{\mathscr{B}} < \epsilon/2$ for some f_i and so

$$(1-|z|^2)|f'(z)| \le ||f-f_i||_{\mathscr{B}} + (1-|z|^2)|f_i'(z)| < \epsilon$$

whenever |z| > r. This establishes (3).

On the other hand if K is a closed bounded set which satisfies (3) and (f_n) is a sequence in K, then by Montel's theorem there is a subsequence (f_{n_k}) which converges uniformly on compact subsets of $\mathbb D$ to some holomorphic function f. Then also (f'_{n_k}) converges uniformly to f' on compact subsets of $\mathbb D$. By (3), if

 $\epsilon>0$, there is an r, 0< r<1, such that for all $g\in K$, $(1-|z|^2)|g'(z)|<\epsilon/2$ if |z|>r. It follows that $(1-|z|^2)|f'(z)|<\epsilon/2$ if |z|>r. Since (f_{n_k}) converges uniformly to f and (f'_{n_k}) converges uniformly to f' on $|z|\leq r$, it follows that $\limsup_{k\to\infty}\|f_{n_k}-f\|_{\mathscr{B}}\leq\epsilon$. Since $\epsilon>0$, $\lim_{k\to\infty}\|f_{n_k}-f\|_{\mathscr{B}}=0$ and so K is compact.

Theorem 1. If ϕ is a holomorphic mapping of the unit disk \mathbb{D} into itself, then ϕ induces a compact composition operator on \mathscr{B}_0 if and only if

(4)
$$\lim_{|z| \to 1} \frac{1 - |z|^2}{1 - |\phi(z)|^2} |\phi'(z)| = 0.$$

Proof. It follows from Lemma 1 that C_{ϕ} is compact on \mathscr{B}_0 if and only if

$$\lim_{|z|\to 1} \sup_{\|f\|_{\mathscr{L}} \le 1} (1-|z|^2)|(f\circ\phi)'(z)| = 0.$$

But

$$(1-|z|^2)|(f\circ\phi)'(z)| = \frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)|(1-|\phi(z)|^2)|f'(\phi(z))|,$$

and

$$\sup_{\|f\|_{\mathscr{D}} \le 1} (1 - |w|^2)|f'(w)| = 1$$

for each $w \in \mathbb{D}$. The theorem follows.

It should be remarked that (4) implies $\phi \in \mathcal{B}_0$. A similar condition characterizes compact composition operators on \mathcal{B} .

Theorem 2. If ϕ is a holomorphic mapping of the unit disk $\mathbb D$ into itself, then ϕ induces a compact composition operator on $\mathscr B$ if and only if for every $\epsilon > 0$, there exists r, 0 < r < 1, such that

(5)
$$\frac{1 - |z|^2}{1 - |\phi(z)|^2} |\phi'(z)| < \epsilon$$

whenever $|\phi(z)| > r$.

Proof. First assume that (5) holds. In order to prove that C_{ϕ} is compact on \mathscr{B} it is enough to show that if (f_n) is a bounded sequence in \mathscr{B} which converges to 0 uniformly on compact subsets of \mathbb{D} , then $||f_n \circ \phi||_{\mathscr{B}} \to 0$. Let $M = \sup_n ||f_n||_{\mathscr{B}}$. Given $\epsilon > 0$ there exists r, 0 < r < 1, such that $\frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)| < \frac{\epsilon}{2M}$ if $|\phi(z)| > r$. Since

$$(1-|z|^2)|(f_n \circ \phi)'(z)| = \frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)|(1-|\phi(z)|^2)|f_n'(\phi(z))|$$

$$\leq M\frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)|,$$

it follows that $(1-|z|^2)|(f_n \circ \phi)'(z)| < \frac{\epsilon}{2}$ if $|\phi(z)| > r$. On the other hand, $f_n \circ \phi(0) \to 0$ and $(1-|w|^2)|f_n'(w)| \to 0$ uniformly for $|w| \le r$. Since

$$(1-|z|^2)|(f_n \circ \phi)'(z)| \le (1-|\phi(z)|^2)|f_n'(\phi(z))|,$$

it follows that for large enough n, $|f_n \circ \phi(0)| < \frac{\epsilon}{2}$ and $(1-|z|^2)|(f_n \circ \phi)'(z)| < \frac{\epsilon}{2}$ if $|\phi(z)| \le r$. Hence $||f_n \circ \phi||_{\mathscr{B}} < \epsilon$ for large n.

Now assume that (5) fails. Then there exists a subsequence (z_n) in $\mathbb D$ and an $\epsilon>0$ such that $|z_n|\to 1$ and $\frac{1-|z_n|^2}{1-|\phi(z_n)|^2}|\phi'(z_n)|>\epsilon$ for all n. Passing to a subsequence if necessary it may be assumed that $w_n=\phi(z_n)\to w_0\in\mathbb T$. Let $f_n(z)=\log\frac{1}{1-\overline{w}_nz}$. Then (f_n) converges to f_0 uniformly on compact subsets of $\mathbb D$. On the other hand,

$$\begin{split} \|C_{\phi}f_{n} - C_{\phi}f_{0}\|_{\mathscr{B}} &\geq (1 - |z_{n}|^{2})|(C_{\phi}f_{n})'(z_{n}) - (C_{\phi}f_{0})'(z_{n})| \\ &= (1 - |z_{n}|^{2})|\phi'(z_{n})| \left| \frac{\overline{w}_{n}}{1 - |w_{n}|^{2}} - \frac{\overline{w}_{0}}{1 - \overline{w}_{0}w_{n}} \right| \\ &= \frac{(1 - |z_{n}|^{2})}{1 - |w_{n}|^{2}}|\phi'(z_{n})| \left| \frac{\overline{w}_{n} - \overline{w}_{0}}{1 - \overline{w}_{0}w_{n}} \right| \\ &> \epsilon \end{split}$$

for all n, so $C_{\phi}f_n$ does not converge to $C_{\phi}f_0$ in norm. Hence C_{ϕ} is not compact.

It is important to note that although (4) implies (5), since in this case C_{ϕ} on \mathscr{B} is the second adjoint of C_{ϕ} on \mathscr{B}_{0} , the two conditions are not equivalent. Condition (4) implies that $\phi \in \mathscr{B}_{0}$, while there certainly exist functions $\phi \notin \mathscr{B}_{0}$ which satisfy (5). Indeed, any ϕ for which $\|\phi\|_{\infty} < 1$ satisfies (5) trivially.

A sequence (w_n) in $\mathbb D$ is said to be η -separated if $\rho(w_n,w_m)=\left|\frac{w_m-w_n}{1-w_mw_n}\right|>\eta$ whenever $m\neq n$. Thus an η -separated sequence consists of points which are uniformly far apart in the pseudohyperbolic metric on $\mathbb D$, or equivalently, the hyperbolic balls $\Delta(w_n,r)=\{z\mid \rho(z,w_n)< r\}$ are pairwise disjoint for some r>0. Evidently any sequence (w_n) in $\mathbb D$ which satisfies $|w_n|\to 1$ possesses an η -separated subsequence for any $\eta>0$. In particular, if the sequence (w_n) in the proof of Theorem 2 is η -separated, then the calculation in the proof shows that $\|C_\phi f_m - C_\phi f_n\| > \epsilon \eta$ whenever $m\neq n$, so $(C_\phi f_n)$ has no norm convergent subsequences.

Another property of separated sequences is contained in the next proposition. This proposition is related to some interpolation results of Rochberg [RR1, RR2]. Since the method of proof is precisely the same as Rochberg's, a proof will only be sketched.

Proposition 1. There is an absolute constant R > 0 such that if (w_n) is R-separated, then for every bounded sequence (λ_n) there is an $f \in \mathcal{B}$ such that $(1 - |w_n|^2) f'(w_n) = \lambda_n$ for all n.

The idea of the proof is to consider two operators $S: \mathscr{B} \to l^{\infty}$ given by

$$S(f)_n = (1 - |w_n|^2)f'(w_n)$$

and $T: l^{\infty} \to \mathcal{B}$ given by

$$T(\lambda)(z) = \sum_{n=1}^{\infty} \lambda_n \frac{1}{3\overline{w}_n} \frac{(1 - |w_n|^2)^3}{(1 - \overline{w}_n z)^3}$$

where $\lambda = (\lambda_n) \in l^{\infty}$. The proposition will follow if it can be shown that ||I - ST|| < 1, for then ST will be invertible and so S will be onto. The symbol C will denote a constant whose value changes from place to place but

does not depend on R. Now

$$(ST - I)(\lambda)_n = (1 - |w_n|^2) \sum_{m \neq n} \lambda_m \frac{(1 - |w_m|^2)^3}{(1 - \overline{w}_m w_n)^4}$$

and so it will be enough to estimate

$$\sup_{n} (1 - |w_n|) \sum_{m \neq n} \frac{(1 - |w_m|^2)^3}{|1 - \overline{w}_m w_n|^4}.$$

If R > 1/2, say, then there is a fixed $\delta > 0$ such that the Euclidean disk D_m of center w_m and radius $\delta(1 - |w_m|^2)$ is contained in the hyperbolic disk $\Delta_m = \Delta(w_m, R)$ and is disjoint from the hyperbolic disks Δ_n for $n \neq m$. Since $|1 - \overline{z}w_n|^{-4}$ is subharmonic and the radius of D_m is comparable to $1 - |w_m|^2$,

$$\frac{(1-|w_m|^2)^3}{|1-\overline{w}_m w_n|^4} \le C \iint_{D_m} \frac{1-|w_m|^2}{|1-\overline{z}w_n|^4} \, dx \, dy;$$

and since $|1 - \overline{w}_n z|$ dominates $1 - |w_m|^2$ on D_m , it follows that

$$\frac{(1-|w_m|^2)^3}{|1-\overline{w}_m w_n|^4} \le C \iint_{D_m} \frac{1}{|1-\overline{w}_n z|^3} \, dx \, dy$$

and hence

$$\sup_{n} (1 - |w_{n}|) \sum_{m \neq n} \frac{(1 - |w_{m}|^{2})^{3}}{|1 - \overline{w}_{m} w_{n}|^{4}} \leq C \iint_{\bigcup_{m \neq n} D_{m}} \frac{1 - |w_{n}|^{2}}{|1 - \overline{w}_{n} z|^{3}} dx dy
\leq C \iint_{\mathbb{D} \setminus \Lambda_{n}} \frac{1 - |w_{n}|^{2}}{|1 - \overline{w}_{n} z|^{3}} dx dy.$$

The change of variables $z = \frac{w_n + \zeta}{1 + \overline{w_n} \zeta}$ turns this into

$$\sup_{n} (1 - |w_n|) \sum_{m \neq n} \frac{(1 - |w_m|^2)^3}{|1 - \overline{w}_m w_n|^4} \le C \iint_{|\zeta| > R} \frac{1}{|1 + \overline{w}_n \zeta|} \, d\xi \, d\eta \,,$$

and the last integral can be made arbitrarily small uniformly in n if R is chosen close enough to 1. This provides the desired estimate.

Since every sequence (w_n) with $|w_n| \to 1$ contains an R-separated subsequence (w_{n_k}) , it follows that there is an $f \in \mathcal{B}$ such that $(1-|w_{n_k}|^2)f'(w_{n_k})=1$ for all k. This will be used in the proof of the next theorem.

Theorem 3. Every weakly compact composition operator C_{ϕ} on \mathcal{B}_0 is compact. Proof. The composition operator $C_{\phi} : \mathcal{B}_0 \to \mathcal{B}_0$ is compact if and only if

$$\lim_{|z| \to 1} \frac{1 - |z|^2}{1 - |\phi(z)|^2} |\phi'(z)| = 0$$

and, according to Gantmacher's theorem, weakly compact if and only if $C_{\phi}f \in \mathcal{B}_0$ for every $f \in \mathcal{B}$. If C_{ϕ} is not compact, there is an $\epsilon > 0$ and a sequence (z_n) , $|z_n| \to 1$, such that

$$\frac{1-|z_n|^2}{1-|\phi(z_n)|^2}|\phi'(z_n)| \ge \epsilon$$

for all n. Since $\phi \in \mathcal{B}_0$, $|\phi(z_n)| \to 1$, and by passing to a subsequence it may be assumed that $(\phi(z_n))$ is R-separated. If $f \in \mathcal{B}$,

$$(1 - |z_n|^2)|(C_{\phi}f)'(z_n)| = \frac{1 - |z_n|^2}{1 - |\phi(z_n)|^2}|\phi'(z_n)|(1 - |\phi(z_n)|^2)|f'(\phi(z_n))|$$

$$\geq \epsilon (1 - |\phi(z_n)|^2)|f'(\phi(z_n))|.$$

Since $(\phi(z_n))$ is R-separated, an application of Proposition 1 produces an $f \in \mathscr{B}$ such that $(1-|\phi(z_n)|^2)|(C_\phi f)'(z_n)|=1$, for all n. Since $(1-|z_n|^2)|(C_\phi f)'(z_n)|\geq \epsilon$ and $|z_n|\to 1$, $C_\phi f\notin \mathscr{B}_0$ and so C_ϕ is not weakly compact.

A slight refinement of these arguments will show that a noncompact composition operator on \mathcal{B}_0 must be an isomorphism on a subspace isomorphic to the sequence space c_0 . This is not surprising since \mathcal{B}_0 is known to be isomorphic to c_0 .

3. Examples

As remarked in the introduction any holomorphic mapping ϕ of the unit disk into itself satisfying $\|\phi\|_{\infty} < 1$ induces a compact composition operator on $\mathscr B$ and also on $\mathscr B_0$ if $\phi \in \mathscr B_0$. On the other hand it is easy to see that if ϕ has a finite angular derivative at some point of $\mathbb T$, then C_{ϕ} cannot be compact. Indeed, ϕ has an angular derivative at $\zeta \in \mathbb T$ if the nontangential limit $\omega = f(\zeta) \in \mathbb T$ exists and if the quotient $\frac{f(z) - f(\zeta)}{z - \zeta}$ converges to some complex number μ as $z \to \zeta$ nontangentially. It is known that $\mu \neq 0$, and the Julia-Carathéodory lemma shows that $\frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)|$ converges to $\zeta \overline{\omega} \mu \neq 0$ nontangentially. Applying Theorem 1 or 2 as appropriate shows that C_{ϕ} is not compact

It turns out, however, that ϕ can push the disk much more sharply into itself and still induce a noncompact composition operator. The easiest way to see this is to consider the functions $\phi_{\lambda,\alpha}(z) = 1 - \lambda(1-z)^{\alpha}$, $0 < \lambda$, $\alpha < 1$. It is easy to see that $\phi_{\lambda,\alpha} \in \mathscr{B}_0$ and that $\phi_{\lambda,\alpha}$ maps $\mathbb D$ onto a region which behaves at 1 like a Stolz angle of opening $\pi\alpha$. If C_{ϕ} were compact on \mathscr{B}_0 , composition with $\log \frac{1}{1-z}$ would yield a function in \mathscr{B}_0 , but an easy calculation shows that this is not so. This leads to the consideration of cusps.

Throughout the remainder of this section ϕ will denote a univalent mapping of the unit disk $\mathbb D$ into itself with image $G = \phi(\mathbb D)$. For simplicity it will be assumed that $\overline{G} \cap \mathbb T = \{1\}$. The region G is said to have a cusp at 1 [P, p. 256] if

(6)
$$\operatorname{dist}(w, \partial G) = o(|1 - w|)$$

as $w \to 1$ in G. Otherwise G does not have a cusp at 1. The cusp is said to be nontangential if G lies inside a Stolz angle near 1, i.e., there exist r, M > 0 such that

$$|1 - w| \le M(1 - |w|^2)$$

if |1-w| < r, $w \in G$. Finally the following geometric property of the conformal mapping ϕ will be needed. If ϕ is a conformal mapping with domain \mathbb{D} ,

then

(8)
$$\frac{1}{4}(1-|z|^2)|\phi'(z)| \le \operatorname{dist}(\phi(z), \, \partial G) \le (1-|z|^2)|\phi'(z)|.$$

This inequality, known as the Koebe distortion theorem, is an elementary consequence of the Schwarz lemma and Koebe's one-quarter theorem [G, p. 13]. It can be used to prove that bounded univalent functions lie in \mathcal{B}_0 . Indeed, if $\phi \notin \mathcal{B}_0$, there is a $\delta > 0$ and a sequence (z_n) in \mathbb{D} with $|z_n| \to 1$ and $(1-|z_n|)|\phi'(z_n)| > \delta$ for all n. Hence $\operatorname{dist}(\phi(z_n), \partial G) > \delta/4$, so $\phi(z_n)$ has a cluster point in G, contradicting the fact that ϕ is a proper map. Theorem 4 provides a negative result.

Theorem 4. If ϕ is univalent and $G = \phi(\mathbb{D})$ satisfies $\overline{G} \cap \mathbb{T} = \{1\}$ but does not have a cusp at 1, then C_{ϕ} is not compact on \mathscr{B}_0 .

Proof. Since G does not have a cusp at 1, (6) fails. Hence there is a $\delta > 0$ and a sequence (z_n) in $\mathbb D$ such that $|z_n| \to 1$, but

$$\operatorname{dist}(\phi(z_n), \partial G) \geq \delta |1 - \phi(z_n)|.$$

Hence

$$\delta(1-|\phi(z_n)|^2) \le 2\delta(1-|\phi(z_n)|) \le 2\operatorname{dist}(\phi(z_n), \partial G) \le 2(1-|z_n|^2)|\phi'(z_n)|,$$

so $\frac{1-|z_n|^2}{1-|\phi(z_n)|^2}|\phi'(z_n)|\geq \frac{\delta}{2}$. Since $|z_n|\to 1$, Theorem 1 shows that C_ϕ is not compact.

The next theorem shows how to produce compact composition operators on \mathscr{B}_0 from univalent mappings ϕ with $\|\phi\|_{\infty} = 1$.

Theorem 5. If ϕ is univalent and if G has a nontangential cusp at 1 and touches the unit circle at no other point, then C_{ϕ} is a compact operator on \mathscr{B}_0 .

Proof. As $\phi \in \mathcal{B}_0$, it will be enough to show that

$$\lim_{|z|\to 1}\frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)|=0\,,$$

since the theorem will then follow from Theorem 1. Since G has a nontangential cusp at 1, there exist r, M > 0 such that

$$|1-w| \leq M(1-|w|^2)$$

if |1-w| < r, $w \in G$. Let $\epsilon > 0$. Since G has a cusp at 1, there is a $\delta > 0$ such that

$$\operatorname{dist}(w, \partial G) \leq \frac{\epsilon}{4M} |1 - w|$$

if $|1-w|<\delta$, $w\in G$. Let $\eta=\min(\delta,r)$. If $|1-\phi(z)|<\eta$, it follows that

$$\frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)| \le \frac{4\operatorname{dist}(\phi(z), \partial G)}{1-|\phi(z)|^2}$$
$$\le \frac{\epsilon}{M} \frac{|1-\phi(z)|}{1-|\phi(z)|^2}$$
$$< \epsilon.$$

On the other hand if $|1-\phi(z)| \ge \eta$, there is a constant N>0 such that $|\phi'(z)| \le N$ by the smoothness assumption and a $\rho>0$ such that $1-|\phi(z)|^2 \ge \rho$. In this case

$$\frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)| \leq \frac{N}{\rho}(1-|z|^2),$$

and this is less than ϵ if $|z|^2 > 1 - \frac{\rho \epsilon}{N}$. That completes the proof.

It is possible to describe regions G with tangential cusp such that the Riemann mapping $\phi: \mathbb{D} \to G$ admits either possibility. Indeed, suppose that $h(\theta)$ and $k(\theta)$ are positive continuous functions on $[0, \theta_0]$ with $h(\theta) = o(\theta)$ and $k(\theta) = o(\theta)$. Let

$$G = \{ re^{i\theta} \mid 0 < \theta < \theta_0, \ h(\theta) < 1 - r < h(\theta) + k(\theta) \}.$$

Then clearly G has a tangential cusp at 1. If $k(\theta) = o(h(\theta))$, then, for $w = re^{i\theta} = \phi(z)$,

$$(1-|z|^2)|\phi'(z)| \le \operatorname{dist}(w, \partial G) \le k(\theta)$$

and

$$1-|w|^2 \ge 1-|w| > h(\theta)$$
,

so $\frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)|\to 0$ as $|\phi(z)|\to 1$. Since ϕ is univalent, the argument of Theorem 5 shows that C_ϕ is compact. On the other hand if $k(\theta)=2h(\theta)$ and $w(\theta)=(1-2h(\theta))e^{i\theta}=\phi(z(\theta))$, then evidently $\mathrm{dist}(w(\theta),\partial G)>ch(\theta)$ for some constant c, and since $(1-|z|^2)|\phi'(z)|\geq \mathrm{dist}(\phi(z),\partial G)$, it follows that $\frac{1-|z(\theta)|^2}{1-|w(\theta)|^2}|\phi'(z(\theta))|\geq \frac{c}{4}$, and so C_ϕ is not compact.

4. Conclusion

Although the conditions of Theorems 1 and 2 provide succinct analytic conditions on a function ϕ in order that it induce compact composition operators, it is desirable to have more geometric conditions. For example, it is clear from Section 3 that if ϕ is a conformal mapping which has only a finite number of nontangential cusps on the unit circle $\mathbb T$ and no other points of contact, then C_{ϕ} will be compact on \mathscr{B}_0 . This raises the question of whether or not there is a $\phi \in \mathscr{B}_0$ such that $\overline{\phi(\mathbb D)} \cap \mathbb T$ is infinite and C_{ϕ} is compact on \mathscr{B}_0 . In this regard, it is known that if ϕ has nontangential limit of modulus one on a set of positive measure, then ϕ has an angular derivative at some point and so C_{ϕ} is not compact [Sh, p. 71]. Further information about compact operators considered from a geometric point of view, especially on H^2 , can be found in [Sh] and [SSS].

Finally, if $\phi \in \mathscr{B}_0$ and C_{ϕ} is compact, then $\log \frac{1}{1-\overline{w}\phi(z)} \in \mathscr{B}_0$ for all $w \in \mathbb{T}$. Is the converse of this true?

REFERENCES

- [A] Lars V. Ahlfors, Conformal invariants, McGraw-Hill, New York, 1973.
- [ACP] J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
- [D] Joseph Diestel, Sequences and series in Banach spaces, Springer-Verlag, New York, 1984.

- [G] John Garnett, Applications of harmonic measure, Univ. Arkansas Lecture Notes in the Math. Sci., vol. 8, John Wiley & Sons, New York, 1986.
- [P] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992.
- [RR1] R. Rochberg, Decomposition theorems for Bergman spaces and their applications, Operators and Function Theory (S. C. Power, ed.), Reidel, Dordrecht, 1985, pp. 225-277.
- [RR2] R. Rochberg, Interpolation by functions in the Bergman spaces, Michigan Math. J. 29 (1982), 229-236.
- [Sh] J. Shapiro, Composition operators and classical function theory, Springer-Verlag, New York, 1993.
- [SSS] J. H. Shapiro, W. Smith, and D. A. Stegenga, Geometric models and compactness of composition operators, J. Funct. Anal. (to appear).

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60208 E-mail address: madigan@math.nwu.edu

DEPARTMENT OF MATHEMATICS, LAMAR UNIVERSITY, BEAUMONT, TEXAS 77710 E-mail address: matheson@math.lamar.edu